126 research outputs found

    Natural hp-BEM for the electric field integral equation with singular solutions

    Full text link
    We apply the hp-version of the boundary element method (BEM) for the numerical solution of the electric field integral equation (EFIE) on a Lipschitz polyhedral surface G. The underlying meshes are supposed to be quasi-uniform triangulations of G, and the approximations are based on either Raviart-Thomas or Brezzi-Douglas-Marini families of surface elements. Non-smoothness of G leads to singularities in the solution of the EFIE, severely affecting convergence rates of the BEM. However, the singular behaviour of the solution can be explicitly specified using a finite set of power functions (vertex-, edge-, and vertex-edge singularities). In this paper we use this fact to perform an a priori error analysis of the hp-BEM on quasi-uniform meshes. We prove precise error estimates in terms of the polynomial degree p, the mesh size h, and the singularity exponents.Comment: 17 page

    A Nitsche-based domain decomposition method for hypersingular integral equations

    Full text link
    We introduce and analyze a Nitsche-based domain decomposition method for the solution of hypersingular integral equations. This method allows for discretizations with non-matching grids without the necessity of a Lagrangian multiplier, as opposed to the traditional mortar method. We prove its almost quasi-optimal convergence and underline the theory by a numerical experiment.Comment: 21 pages, 5 figure
    corecore